36#ifndef STK_IREGRESSION_H
37#define STK_IREGRESSION_H
106template <
class YArray,
class XArray,
class Weights>
119 :
Base((
p_y == 0) ? 0 :
p_y->asPtrDerived(), (
p_x == 0) ? 0 :
p_x->asPtrDerived())
128 :
Base(
y.asDerived(), x.asDerived())
207template <
class YArray,
class XArray,
class Weights>
228template <
class YArray,
class XArray,
class Weights>
This file include all the header files of the project STKernel.
Interface base class for Regression methods.
virtual bool run()
run the computations.
virtual ~IRegression()
virtual destructor.
bool residualsStep()
Compute the residuals of the model.
virtual bool regressionStep()=0
compute the regression function.
virtual bool finalizeStep()
perform any computation needed after the call of the regression method.
int nbFreeParameter_
number of parameter of the regression method.
YArray residuals_
Container of the residuals.
YArray predicted_
Container of the predicted output.
YArray const & residuals() const
virtual bool initializeStep()
perform any computation needed before the call of the regression method.
int nbFreeParameter() const
IRunnerSupervised< YArray, XArray, Weights > Base
virtual bool predictionStep()=0
Compute the predicted outputs by the regression function and store the result in the p_predicted_ arr...
IRegression(ArrayBase< YArray > const *p_y, ArrayBase< XArray > const *p_x)
constructor
virtual bool regressionStep(Weights const &weights)=0
compute the weighted regression function.
virtual bool run(Weights const &weights)
run the weighted computations.
IRegression()
Default constructor.
YArray const & predicted() const
IRegression(ArrayBase< YArray > const &y, ArrayBase< XArray > const &x)
Constructor.
virtual int computeNbFreeParameter() const =0
Compute the number of parameter of the regression function.
virtual YArray extrapolate(XArray const &x) const =0
bool hasRun_
true if run has been used, false otherwise
Abstract class for all classes making supervised learning.
YArray const * p_y_
A pointer on the y data set.
XArray const * p_x_
A pointer on the x data set.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
virtual bool predictionStep()
Compute the predicted outputs by the regression function.
virtual int computeNbFreeParameter() const
Compute the number of parameter of the regression function.
virtual bool regressionStep()
compute the regression function.
The namespace STK is the main domain space of the Statistical ToolKit project.