36#ifndef STK_POISSONPARAMETERS_H
37#define STK_POISSONPARAMETERS_H
39#include "../STK_Clust_Util.h"
77 inline Real lambda(
int k,
int j)
const {
return lambdak_[k] * lambdaj_[
j];}
80 void resize(
Range const& range);
83 void updateStatistics();
87 void releaseStatistics();
129 void resize(
Range const& range);
132 void updateStatistics();
134 void setStatistics();
136 void releaseStatistics();
141 template<
class Array>
144 for(
int k=lambda_.begin(); k<lambda_.end(); ++k)
145 { lambda_[k] =
params.row(k);}
172 inline Real const&
lambda(
int k,
int j)
const {
return lambda_[k];}
175 void resize(
Range const& range);
178 void updateStatistics();
180 void setStatistics();
182 void releaseStatistics();
187 template<
class Array>
190 for(
int k=lambda_.begin(); k<lambda_.end(); ++k)
191 { lambda_[k] =
params.row(k).mean();}
In this file we define and implement the final class Array1D.
In this file we implement the final class CArrayPoint.
In this file we implement the final class CArrayVector.
This file contain the functors computings statistics.
This file contain the definition and implementation of the Online classes.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Index sub-vector region: Specialization when the size is unknown.
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
hidden::FunctorTraits< Derived, MeanOp >::Row meanByCol(Derived const &A)
hidden::FunctorTraits< Derived, MeanOp >::Col meanByRow(Derived const &A)
The namespace STK is the main domain space of the Statistical ToolKit project.
Array1D< Stat::Online< CPointX, Real > > stat_lambda_
Array of the lambdak_ statistics.
Real const & lambda(int k, int j) const
Array1D< CPointX > lambda_
intensity of the variables
void setParameters(ExprBase< Array > const ¶ms)
Set the parameters of the mixture model.
CVectorX lambdak_
intensity of the variables by class
Real lambda(int k, int j) const
void setParameters(ExprBase< Array > const ¶ms)
Set the parameters of the mixture model.
Array1D< Stat::Online< Real, Real > > stat_lambdak_
Array of the lambdak_ statistics.
CPointX lambdaj_
intensity of the variables by variables
Stat::Online< CVectorX, Real > stat_lambdaj_
Array of the lambdaj_ statistics.
Array1D< Stat::Online< Real, Real > > stat_lambda_
Array of the lambdak_ statistics.
Real const & lambda(int k, int j) const
void setParameters(ExprBase< Array > const ¶ms)
Set the parameters of the mixture model.
Array1D< Real > lambda_
intensity of the variables
struct storing the parameters of the mixture.