STK++ 0.9.13
STK_Clust_Util.h File Reference

In this file we define the enum, constants and utilities functions of the Clustering project. More...

#include <STKernel.h>
Include dependency graph for STK_Clust_Util.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjkBkQkDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjkBkQkD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjkBkQDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjkBkQD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjkBQkDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjkBQkD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjkBQDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjkBQD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AkBkQkDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AkBkQkD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AkBkQDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AkBkQD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AkBQkDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AkBQkD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AkBQDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AkBQD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjBkQkDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjBkQkD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjBkQDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjBkQD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjBQkDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_AjBQkD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_ABkQkDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_ABkQkD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_ABkQDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_ABkQD_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_ABQkDk_ >
 
struct  STK::hidden::HDCovarianceChooser< Clust::HDCovariance_ABQkD_ >
 

Namespaces

namespace  STK
 The namespace STK is the main domain space of the Statistical ToolKit project.
 
namespace  STK::hidden
 The hidden namespace enclose the classes and methods which are used internally by the STK++ classes.
 
namespace  STK::Clust
 The namespace Clust enclose all the enum and utilities functions needed by the Clustering project.
 

Enumerations

enum  STK::Clust::initType {
  STK::Clust::noInit_ = -1 , STK::Clust::randomInit_ = -2 , STK::Clust::randomParamInit_ = 0 , STK::Clust::randomClassInit_ = 1 ,
  STK::Clust::randomFuzzyInit_ = 2 , STK::Clust::valueParamInit_ = 3
}
 initialization type. More...
 
enum  STK::Clust::algoType { STK::Clust::emAlgo_ = 0 , STK::Clust::cemAlgo_ = 1 , STK::Clust::semAlgo_ = 2 , STK::Clust::semiSemAlgo_ = 3 }
 Estimation algorithms. More...
 
enum  STK::Clust::algoPredictType { STK::Clust::emPredictAlgo_ , STK::Clust::semiSEMPredictAlgo_ }
 Learning estimation algorithms. More...
 
enum  STK::Clust::algoLearnType { STK::Clust::imputeAlgo_ , STK::Clust::simulAlgo_ }
 Learning estimation algorithms. More...
 
enum  STK::Clust::strategyType { STK::Clust::simpleStrategy_ = 0 , STK::Clust::XemStrategy_ = 1 , STK::Clust::SemStrategy_ = 2 , STK::Clust::FullStrategy_ = 3 }
 strategy of estimation More...
 
enum  STK::Clust::criterionType { STK::Clust::aic_ = 0 , STK::Clust::bic_ = 1 , STK::Clust::icl_ = 2 , STK::Clust::ml_ = 3 }
 type of criterion to use in order to select the mixture model More...
 
enum  STK::Clust::exceptions {
  STK::Clust::randomInitFail_ , STK::Clust::randomParamInitFail_ , STK::Clust::randomClassInitFail_ , STK::Clust::randomFuzzyInitFail_ ,
  STK::Clust::estimFail_ , STK::Clust::initializeStepFail_ , STK::Clust::mStepFail_ , STK::Clust::eStepFail_ ,
  STK::Clust::mapStepFail_ , STK::Clust::cStepFail_ , STK::Clust::sStepFail_
}
 Specific exceptions allowing to handle the erroros that can occur in the estimation process. More...
 
enum  STK::Clust::modelState {
  STK::Clust::modelCreated_ =0 , STK::Clust::modelInitialized_ =1 , STK::Clust::modelParamInitialized_ =2 , STK::Clust::shortRun_ ,
  STK::Clust::longRun_ , STK::Clust::modelFinalized_
}
 Give the state of the model. More...
 
enum  STK::Clust::ParsimoniousCovarianceModel {
  STK::Clust::Covariance_EII_ =100 , STK::Clust::Covariance_VII_ , STK::Clust::Covariance_EEI_ , STK::Clust::Covariance_VEI_ ,
  STK::Clust::Covariance_EVI_ , STK::Clust::Covariance_VVI_ , STK::Clust::Covariance_EEE_ , STK::Clust::Covariance_VEE_ ,
  STK::Clust::Covariance_EVE_ , STK::Clust::Covariance_VVE_ , STK::Clust::Covariance_EEV_ , STK::Clust::Covariance_VEV_ ,
  STK::Clust::Covariance_EVV_ , STK::Clust::Covariance_VVV_
}
 list of the parsimonious covariance models that can be used More...
 
enum  STK::Clust::HDCovarianceModel {
  STK::Clust::HDCovariance_AjkBkQkDk_ =120 , STK::Clust::HDCovariance_AjkBkQkD_ , STK::Clust::HDCovariance_AjkBkQDk_ , STK::Clust::HDCovariance_AjkBkQD_ ,
  STK::Clust::HDCovariance_AjkBQkDk_ , STK::Clust::HDCovariance_AjkBQkD_ , STK::Clust::HDCovariance_AjkBQDk_ , STK::Clust::HDCovariance_AjkBQD_ ,
  STK::Clust::HDCovariance_AkBkQkDk_ , STK::Clust::HDCovariance_AkBkQkD_ , STK::Clust::HDCovariance_AkBkQDk_ , STK::Clust::HDCovariance_AkBkQD_ ,
  STK::Clust::HDCovariance_AkBQkDk_ , STK::Clust::HDCovariance_AkBQkD_ , STK::Clust::HDCovariance_AkBQDk_ , STK::Clust::HDCovariance_AkBQD_ ,
  STK::Clust::HDCovariance_AjBkQkDk_ , STK::Clust::HDCovariance_AjBkQkD_ , STK::Clust::HDCovariance_AjBkQDk_ , STK::Clust::HDCovariance_AjBkQD_ ,
  STK::Clust::HDCovariance_AjBQkDk_ , STK::Clust::HDCovariance_AjBQkD_ , STK::Clust::HDCovariance_AjBQDk_ , STK::Clust::HDCovariance_AjBQD_ ,
  STK::Clust::HDCovariance_ABkQkDk_ , STK::Clust::HDCovariance_ABkQkD_ , STK::Clust::HDCovariance_ABkQDk_ , STK::Clust::HDCovariance_ABkQD_ ,
  STK::Clust::HDCovariance_ABQkDk_ , STK::Clust::HDCovariance_ABQkD_ , STK::Clust::HDCovariance_ABQDk_ , STK::Clust::HDCovariance_ABQD_
}
 list of the HD covariance models that can be used More...
 
enum  STK::Clust::Mixture {
  STK::Clust::Gamma_ajk_bjk_ =0 , STK::Clust::Gamma_ajk_bk_ , STK::Clust::Gamma_ajk_bj_ , STK::Clust::Gamma_ajk_b_ ,
  STK::Clust::Gamma_ak_bjk_ , STK::Clust::Gamma_ak_bk_ , STK::Clust::Gamma_ak_bj_ , STK::Clust::Gamma_ak_b_ ,
  STK::Clust::Gamma_aj_bjk_ , STK::Clust::Gamma_aj_bk_ , STK::Clust::Gamma_a_bjk_ , STK::Clust::Gamma_a_bk_ ,
  STK::Clust::Gaussian_sjk_ =20 , STK::Clust::Gaussian_sk_ , STK::Clust::Gaussian_sj_ , STK::Clust::Gaussian_s_ ,
  STK::Clust::Gaussian_sjsk_ , STK::Clust::Categorical_pjk_ =40 , STK::Clust::Categorical_pk_ , STK::Clust::Poisson_ljk_ = 60 ,
  STK::Clust::Poisson_lk_ , STK::Clust::Poisson_ljlk_ , STK::Clust::Kmm_sk_ = 80 , STK::Clust::Kmm_s_ ,
  STK::Clust::HDGaussian_AjkBkQkDk_ =120 , STK::Clust::HDGaussian_AjkBkQkD_ , STK::Clust::HDGaussian_AjkBkQDk_ , STK::Clust::HDGaussian_AjkBkQD_ ,
  STK::Clust::HDGaussian_AjkBQkDk_ , STK::Clust::HDGaussian_AjkBQkD_ , STK::Clust::HDGaussian_AjkBQDk_ , STK::Clust::HDGaussian_AjkBQD_ ,
  STK::Clust::HDGaussian_AkBkQkDk_ , STK::Clust::HDGaussian_AkBkQkD_ , STK::Clust::HDGaussian_AkBkQDk_ , STK::Clust::HDGaussian_AkBkQD_ ,
  STK::Clust::HDGaussian_AkBQkDk_ , STK::Clust::HDGaussian_AkBQkD_ , STK::Clust::HDGaussian_AkBQDk_ , STK::Clust::HDGaussian_AkBQD_ ,
  STK::Clust::HDGaussian_AjBkQkDk_ , STK::Clust::HDGaussian_AjBkQkD_ , STK::Clust::HDGaussian_AjBkQDk_ , STK::Clust::HDGaussian_AjBkQD_ ,
  STK::Clust::HDGaussian_AjBQkDk_ , STK::Clust::HDGaussian_AjBQkD_ , STK::Clust::HDGaussian_ABkQkDk_ , STK::Clust::HDGaussian_ABkQkD_ ,
  STK::Clust::HDGaussian_ABkQDk_ , STK::Clust::HDGaussian_ABkQD_ , STK::Clust::HDGaussian_ABQkDk_ , STK::Clust::HDGaussian_ABQkD_ ,
  STK::Clust::HDGaussian_ABQD_ , STK::Clust::unknown_mixture_ = -1
}
 list of the mixtures that can be used by the composer More...
 
enum  STK::Clust::MixtureClass {
  STK::Clust::Gamma_ , STK::Clust::DiagGaussian_ , STK::Clust::Categorical_ , STK::Clust::Poisson_ ,
  STK::Clust::Kmm_ , STK::Clust::Matrix_ , STK::Clust::HDGaussian_ , STK::Clust::HDMatrixGaussian_ ,
  STK::Clust::unknown_mixture_class_ = -1
}
 list of the class of mixture implemented in stkpp More...
 

Functions

initType STK::Clust::stringToInit (String const &type)
 Convert a String to a initType.
 
algoType STK::Clust::stringToAlgo (String const &type)
 Convert a String to an algoType.
 
algoPredictType STK::Clust::stringToPredictAlgo (String const &type)
 Convert a String to an algoPredictType.
 
algoLearnType STK::Clust::stringToLearnAlgo (String const &type)
 Convert a String to an algoLearnType.
 
criterionType STK::Clust::stringToCriterion (String const &type)
 Convert a String to an criterionType.
 
String STK::Clust::exceptionToString (exceptions const &type)
 convert a Clust::exceptions to a String.
 
Mixture STK::Clust::stringToMixture (String const &type)
 Convert a String to a Mixture.
 
Mixture STK::Clust::stringToMixture (String const &type, bool &freeProp)
 convert a string to a Mixture and specify if the model is with free proportions or fixed proportions.
 
String STK::Clust::mixtureToString (Mixture const &type)
 convert a Mixture to a String.
 
String STK::Clust::mixtureToString (Mixture type, bool freeProp)
 convert a Mixture to a string specifying if the model is with free proportions.
 
MixtureClass STK::Clust::mixtureToMixtureClass (Mixture const &type)
 convert a Mixture to a MixtureClass.
 
IMixtureCriterionSTK::Clust::createCriterion (Clust::criterionType criterion)
 
STK::IMixtureCriterionSTK::Clust::createCriterion (String const &criterion)
 
IMixtureAlgoSTK::Clust::createAlgo (Clust::algoType algo, int nbIterMax, Real epsilon)
 utility function for creating an estimation algorithm.
 
IMixtureAlgoLearnSTK::Clust::createLearnAlgo (Clust::algoLearnType algo, int nbIterMax, Real epsilon)
 utility function for creating a learning algorithm.
 
IMixtureAlgoPredictSTK::Clust::createPredictAlgo (Clust::algoPredictType algo, int nbIterBurn, int nbIterLong, Real epsilon)
 utility function for creating a predicting algorithm.
 
IMixtureInitSTK::Clust::createInit (Clust::initType init=defaultInitType, int nbInits=defaultNbInit, Clust::algoType algo=defaultAlgoInInit, int nbIterMax=defaultNbIterMaxInInit, Real epsilon=defaultEpsilonInInit)
 Utility function for creating a model initializer.
 
IMixtureAlgoSTK::Clust::createShortRunAlgo (Clust::algoType algo=defaultAlgoShortRun, int nbIterMax=defaultMaxIterShortRun, Real epsilon=defaultEpsilonShortRun)
 utility function for creating a a short Run algorithm.
 
IMixtureAlgoSTK::Clust::createLongRunAlgo (Clust::algoType algo=defaultAlgoLongRun, int nbIterMax=defaultMaxIterLongRun, Real epsilon=defaultEpsilonLongRun)
 utility function for creating a long Run algorithm.
 
IMixtureStrategySTK::Clust::createSimpleStrategy (IMixtureComposer *&p_composer, int nbTry, IMixtureInit *const &p_init, IMixtureAlgo *const &algo)
 Utility function for creating a SimpleStrategy.
 
IMixtureStrategySTK::Clust::createFullStrategy (IMixtureComposer *&p_composer, int nbTry, int nbInitRun, IMixtureInit *const &p_init, int nbShortRun, IMixtureAlgo *const &shortRunAlgo, IMixtureAlgo *const &longRunAlgo)
 Utility function for creating a FullStrategy.
 

Variables

const int STK::Clust::defaultNbTry = 5
 Default number of try in an estimation strategy.
 
const Clust::initType STK::Clust::defaultInitType = randomFuzzyInit_
 Default algorithm type in short run.
 
const int STK::Clust::defaultNbInit = 5
 Default number of initializations to perform.
 
const Clust::algoType STK::Clust::defaultAlgoInInit = emAlgo_
 Default algorithm type in initialization.
 
const int STK::Clust::defaultNbIterMaxInInit = 20
 Default number of iteration in an initialization algorithm.
 
const Real STK::Clust::defaultEpsilonInInit = 1e-02
 Default epsilon in the short runs (used in strategy)
 
const Clust::algoType STK::Clust::defaultAlgoShortRun = emAlgo_
 Default algorithm type in short run.
 
const int STK::Clust::defaultMaxIterShortRun = 200
 Default number of iterations in the short runs (used in FullStrategy)
 
const Real STK::Clust::defaultEpsilonShortRun = 1e-04
 Default epsilon in the short runs (used in strategy)
 
const Clust::algoType STK::Clust::defaultAlgoLongRun = emAlgo_
 Default algorithm type in long run.
 
const int STK::Clust::defaultMaxIterLongRun = 1000
 Default number of iterations in the long run (used in FullStrategy)
 
const Real STK::Clust::defaultEpsilonLongRun = 1e-08
 Default epsilon in the long run (used in strategy)
 

Detailed Description

In this file we define the enum, constants and utilities functions of the Clustering project.

Definition in file STK_Clust_Util.h.