35#ifndef STK_GAMMA_A_BJK_H
36#define STK_GAMMA_A_BJK_H
43template<
class Array>
class Gamma_a_bjk;
106 this->moments(p_tik);
109 for (
int j=p_data()->beginCols();
j<p_data()->endCols(); ++
j)
111 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
113 Real mean = meanjk(
j,k), variance = variancejk(
j,k);
115 value += p_tk->elt(k) * (
mean*
mean/variance);
119#ifdef STK_MIXTURE_VERY_VERBOSE
120 stk_cout <<
_T(
" Gamma_a_bjk<Array>::randomInit( CArrayXX const* const& p_tik, CPointX const* const& p_tk) done\n");
129 if (!this->moments(p_tik)) {
flag =
false;}
131 Real y =0.0,
x0 = 0.0,
x1 = param_.shape_;
132 for (
int j=p_data()->beginCols();
j < p_data()->endCols(); ++
j)
134 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
137 y += p_tk->elt(k) * (param_.meanLog_[k][
j]-std::log(
mean));
141 y /= (this->nbSample()*p_data()->sizeCols());
142 x0 /= (this->nbSample()*p_data()->sizeCols());
156#ifdef STK_MIXTURE_DEBUG
157 stk_cout <<
"ML estimation failed in Gamma_a_bjk::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) \n";
168#ifdef STK_MIXTURE_DEBUG
169 stk_cout <<
"ML estimation failed in Gamma_a_bjk::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) \n";
181 for (
int j=p_data()->beginCols();
j < p_data()->endCols(); ++
j)
183 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
184 { param_.scale_[k][
j] = param_.mean_[k][
j]/a;}
In this file we implement the base class for the gamma models.
In this file we implement the exponential law.
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
Base class for the gamma models.
Array const *const & p_data() const
Parameters param_
parameters of the derived mixture model.
Real meanjk(int j, int k)
get the weighted mean of the jth variable of the kth cluster.
Real variancejk(int j, int k)
get the weighted variance of the jth variable of the kth cluster.
Gamma_a_bjk is a mixture model of the following form.
Gamma_a_bjk(int nbCluster)
default constructor
void randomInit(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Initialize randomly the parameters of the Gamma mixture.
int computeNbFreeParameters() const
Gamma_a_bjk(Gamma_a_bjk const &model)
copy constructor
GammaBase< Gamma_a_bjk< Array > > Base
bool run(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Compute the run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) .
virtual Real rand() const
Generate a pseudo Exponential random variate.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Functor computing the derivative of the lnLikelihood of a gamma_ajk_bjk model.
Real findZero(IFunction< Function > const &f, Real const &x0, Real const &x1, Real tol)
find the zero of a function.
bool isNA(Type const &x)
utility method allowing to know if a value is a NA (Not Available) value
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
The namespace STK is the main domain space of the Statistical ToolKit project.
Arithmetic properties of STK fundamental types.
ModelParameters< Clust::Gamma_a_bjk_ > Parameters
Type of the structure storing the parameters of a Gamma_aj_bjk model.
Main class for the mixtures traits policy.