35#ifndef STK_GAMMA_AJ_BJK_H
36#define STK_GAMMA_AJ_BJK_H
39#include "../GammaModels/STK_GammaBase.h"
43template<
class Array>
class Gamma_aj_bjk;
111 this->moments(p_tik);
112 for (
int j=p_data()->beginCols();
j < p_data()->endCols(); ++
j)
116 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
118 Real mean = meanjk(
j,k), variance = variancejk(
j,k);
120 value += p_tk->elt(k) * (
mean*
mean/variance);
124#ifdef STK_MIXTURE_VERY_VERBOSE
125 stk_cout <<
_T(
" Gamma_aj_bjk<Array>::randomInit done\n");
133 if (!this->moments(p_tik)) {
return false;}
135 for (
int j=p_data()->beginCols();
j < p_data()->endCols(); ++
j)
138 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
141 y += p_tk->elt(k) * (param_.meanLog_[k][
j]-std::log(
mean));
145 y /= this->nbSample();
146 x0 /= this->nbSample();
149 {
x0 = 1;
return false;}
156#ifdef STK_MIXTURE_DEBUG
157 stk_cout <<
"ML estimation failed in Gamma_ajk_bjk::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) \n";
166 param_.shape_[
j] = a;
168 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
169 { param_.scale_[k][
j] = meanjk(
j, k)/a;}
In this file we implement the exponential law.
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
Base class for the gamma models.
Array const *const & p_data() const
Parameters param_
parameters of the derived mixture model.
Real meanjk(int j, int k)
get the weighted mean of the jth variable of the kth cluster.
Real variancejk(int j, int k)
get the weighted variance of the jth variable of the kth cluster.
Gamma_aj_bjk is a mixture model of the following form.
bool run(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Compute the run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) .
~Gamma_aj_bjk()
destructor
int computeNbFreeParameters() const
GammaBase< Gamma_aj_bjk< Array > > Base
Gamma_aj_bjk(Gamma_aj_bjk const &model)
copy constructor
void randomInit(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Initialize randomly the parameters of the Gamma mixture.
Gamma_aj_bjk(int nbCluster)
default constructor
virtual Real rand() const
Generate a pseudo Exponential random variate.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Functor computing the derivative of the lnLikelihood of a gamma_ajk_bjk model.
Real findZero(IFunction< Function > const &f, Real const &x0, Real const &x1, Real tol)
find the zero of a function.
bool isNA(Type const &x)
utility method allowing to know if a value is a NA (Not Available) value
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
The namespace STK is the main domain space of the Statistical ToolKit project.
Arithmetic properties of STK fundamental types.
ModelParameters< Clust::Gamma_aj_bjk_ > Parameters
Type of the structure storing the parameters of a Mixture Gamma_a_bjk model.
Main class for the mixtures traits policy.