STK++ 0.9.13
STK_Gamma_aj_bjk.h
Go to the documentation of this file.
1/*--------------------------------------------------------------------*/
2/* Copyright (C) 2004-2016 Serge Iovleff, Université Lille 1, Inria
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU Lesser General Public License as
6 published by the Free Software Foundation; either version 2 of the
7 License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU Lesser General Public License for more details.
13
14 You should have received a copy of the GNU Lesser General Public
15 License along with this program; if not, write to the
16 Free Software Foundation, Inc.,
17 59 Temple Place,
18 Suite 330,
19 Boston, MA 02111-1307
20 USA
21
22 Contact : S..._DOT_I..._AT_stkpp.org (see copyright for ...)
23*/
24
25/*
26 * Project: stkpp::Clustering
27 * created on: 5 sept. 2013
28 * Author: iovleff, serge.iovleff@stkpp.org
29 **/
30
35#ifndef STK_GAMMA_AJ_BJK_H
36#define STK_GAMMA_AJ_BJK_H
37
39#include "../GammaModels/STK_GammaBase.h"
40
41namespace STK
42{
43template<class Array>class Gamma_aj_bjk;
44
45namespace hidden
46{
50template<class Array_>
57
58} // namespace Clust
59
69template<class Array>
70class Gamma_aj_bjk: public GammaBase< Gamma_aj_bjk<Array> >
71{
72 public:
74 using Base::param_;
75
76 using Base::p_data;
77 using Base::meanjk;
78 using Base::variancejk;
79
95 void randomInit( CArrayXX const* const& p_tik, CPointX const* const& p_tk) ;
97 bool run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) ;
99 inline int computeNbFreeParameters() const
100 { return this->nbCluster()*p_data()->sizeCols()+p_data()->sizeCols();}
101};
102
103/* Initialize randomly the parameters of the gamma mixture. The centers
104 * will be selected randomly among the data set and the standard-deviation
105 * will be set to 1.
106 */
107template<class Array>
108void Gamma_aj_bjk<Array>::randomInit( CArrayXX const* const& p_tik, CPointX const* const& p_tk)
109{
110 // compute moments
111 this->moments(p_tik);
112 for (int j=p_data()->beginCols(); j < p_data()->endCols(); ++j)
113 {
114 // random scale for each cluster
115 Real value = 0.0;
116 for (int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
117 {
118 Real mean = meanjk(j,k), variance = variancejk(j,k);
119 param_.scale_[k][j] = Law::Exponential::rand((variance/mean));
120 value += p_tk->elt(k) * (mean*mean/variance);
121 }
122 param_.shape_[j] = STK::Law::Exponential::rand(value/(this->nbSample()));
123 }
124#ifdef STK_MIXTURE_VERY_VERBOSE
125 stk_cout << _T(" Gamma_aj_bjk<Array>::randomInit done\n");
126#endif
127}
128
129/* Compute the weighted mean and the common variance. */
130template<class Array>
131bool Gamma_aj_bjk<Array>::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk)
132{
133 if (!this->moments(p_tik)) { return false;}
134 // estimate a and b
135 for (int j=p_data()->beginCols(); j < p_data()->endCols(); ++j)
136 {
137 Real y =0.0, x0 = 0.0;
138 for (int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
139 {
140 Real mean = meanjk(j,k);
141 y += p_tk->elt(k) * (param_.meanLog_[k][j]-std::log(mean));
142 x0 += p_tk->elt(k) * (mean*mean/variancejk(j,k));
143 }
144 // constant, moment estimate and oldest value
145 y /= this->nbSample();
146 x0 /= this->nbSample();
147 Real x1 = param_.shape_[j];
148 if ((x0 <=0.) || (isNA(x0)))
149 { x0 = 1; return false;}
150
151 // get shape
153 Real a = Algo::findZero(f, x0, x1, 1e-08);
155 {
156#ifdef STK_MIXTURE_DEBUG
157 stk_cout << "ML estimation failed in Gamma_ajk_bjk::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) \n";
158 stk_cout << "x0 =" << x0 << _T("\n";);
159 stk_cout << "f(x0) =" << f(x0) << _T("\n";);
160 stk_cout << "x1 =" << x1 << _T("\n";);
161 stk_cout << "f(x1) =" << f(x1) << _T("\n";);
162#endif
163 a = x0; // use moment estimate
164 }
165 // set values
166 param_.shape_[j] = a;
167 // update bjk
168 for (int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
169 { param_.scale_[k][j] = meanjk(j, k)/a;}
170 }
171 return true;
172}
173
174
175} // namespace STK
176
177#endif /* STK_Gamma_AJ_BJK_H */
In this file we implement the exponential law.
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
Base class for the gamma models.
Parameters param_
parameters of the derived mixture model.
Real meanjk(int j, int k)
get the weighted mean of the jth variable of the kth cluster.
Real variancejk(int j, int k)
get the weighted variance of the jth variable of the kth cluster.
Gamma_aj_bjk is a mixture model of the following form.
bool run(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Compute the run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) .
~Gamma_aj_bjk()
destructor
int computeNbFreeParameters() const
GammaBase< Gamma_aj_bjk< Array > > Base
Gamma_aj_bjk(Gamma_aj_bjk const &model)
copy constructor
void randomInit(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Initialize randomly the parameters of the Gamma mixture.
Gamma_aj_bjk(int nbCluster)
default constructor
virtual Real rand() const
Generate a pseudo Exponential random variate.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Functor computing the derivative of the lnLikelihood of a gamma_ajk_bjk model.
Real findZero(IFunction< Function > const &f, Real const &x0, Real const &x1, Real tol)
find the zero of a function.
bool isNA(Type const &x)
utility method allowing to know if a value is a NA (Not Available) value
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
The namespace STK is the main domain space of the Statistical ToolKit project.
Arithmetic properties of STK fundamental types.
ModelParameters< Clust::Gamma_aj_bjk_ > Parameters
Type of the structure storing the parameters of a Mixture Gamma_a_bjk model.
Main class for the mixtures traits policy.