36#ifndef STK_GAMMA_AJK_B_H
37#define STK_GAMMA_AJK_B_H
40#include "../GammaModels/STK_GammaBase.h"
48template<
class Array>
class Gamma_ajk_b;
111 this->moments(p_tik);
113 for (
int j=p_data()->beginCols();
j < p_data()->endCols(); ++
j)
116 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
118 Real mean = meanjk(
j,k), variance = variancejk(
j,k);
120 value += p_tk->elt(k) * variance/
mean;
124#ifdef STK_MIXTURE_VERY_VERBOSE
125 stk_cout <<
_T(
" Gamma_ajk_b<Array>::randomInit done\n");
134 if (!this->moments(p_tik)) {
flag =
false;}
138 for(iter=0; iter<
MAXITER; ++iter)
140 for (
int j=p_data()->beginCols();
j<p_data()->endCols(); ++
j)
143 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
146 Real x0 = meanjk(
j,k)*meanjk(
j,k)/variancejk(
j,k);
157 param_.shape_[k][
j] =
x0;
158#ifdef STK_MIXTURE_DEBUG
159 stk_cout <<
_T(
"ML estimation failed in Gamma_ajk_bj::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) \n");
166 else { param_.shape_[k][
j] = a;}
170 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
172 num += param_.mean_[k].sum() * p_tk->elt(k);
173 den += param_.shape_[k].sum() * p_tk->elt(k);
181 Real value = this->qValue(p_tik, p_tk);
182#ifdef STK_MIXTURE_DEBUG
185 stk_cout <<
_T(
"In Gamma_ajk_b::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) : run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) diverge\n");
192#ifdef STK_MIXTURE_DEBUG
195 stk_cout <<
_T(
"In Gamma_ajk_b::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) : run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) did not converge\n");
In this file we implement the exponential law.
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
Base class for the gamma models.
Array const *const & p_data() const
Parameters param_
parameters of the derived mixture model.
Real meanjk(int j, int k)
get the weighted mean of the jth variable of the kth cluster.
Real variancejk(int j, int k)
get the weighted variance of the jth variable of the kth cluster.
Gamma_ajk_b is a mixture model of the following form.
Gamma_ajk_b(int nbCluster)
default constructor
GammaBase< Gamma_ajk_b< Array > > Base
Gamma_ajk_b(Gamma_ajk_b const &model)
copy constructor
void randomInit(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Initialize randomly the parameters of the Gamma mixture.
int computeNbFreeParameters() const
bool run(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Compute the weighted mean and the common variance.
virtual Real rand() const
Generate a pseudo Exponential random variate.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Functor computing the difference between the psi function and a fixed value.
Real findZero(IFunction< Function > const &f, Real const &x0, Real const &x1, Real tol)
find the zero of a function.
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
The namespace STK is the main domain space of the Statistical ToolKit project.
Arithmetic properties of STK fundamental types.
ModelParameters< Clust::Gamma_ajk_b_ > Parameters
Type of the structure storing the parameters of a Gamma_ajk_b model.
Main class for the mixtures traits policy.