35#ifndef STK_GAMMA_AJK_BJ_H
36#define STK_GAMMA_AJK_BJ_H
39#include "../GammaModels/STK_GammaBase.h"
46template<
class Array>
class Gamma_ajk_bj;
109 this->moments(p_tik);
110 for (
int j=p_data()->beginCols();
j < p_data()->endCols(); ++
j)
113 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
115 Real mean = meanjk(
j,k), variance = variancejk(
j,k);
117 value += p_tk->elt(k) * variance/
mean;
121#ifdef STK_MIXTURE_VERY_VERBOSE
122 stk_cout <<
_T(
" Gamma_ajk_bj<Array>::randomInit done\n");
130 if (!this->moments(p_tik)) {
return false;}
134 for(iter=0; iter<
MAXITER; ++iter)
136 for (
int j=p_data()->beginCols();
j<p_data()->endCols(); ++
j)
140 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
143 Real x0 = this->meanjk(
j,k)*this->meanjk(
j,k)/this->variancejk(
j,k);
152 param_.shape_[k][
j] =
x0;
153#ifdef STK_MIXTURE_DEBUG
154 stk_cout <<
_T(
"ML estimation failed in Gamma_ajk_bj::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) \n");
161 else { param_.shape_[k][
j] = a;}
162 num += param_.mean_[k][
j] * p_tk->elt(k);
163 den += param_.shape_[k][
j] * p_tk->elt(k);
169 param_.scale_[
j] = b;
172 Real value = this->qValue(p_tik, p_tk);
173#ifdef STK_MIXTURE_DEBUG
176 stk_cout <<
_T(
"In Gamma_ajk_bj::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) : run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) diverge\n");
183#ifdef STK_MIXTURE_DEBUG
186 stk_cout <<
_T(
"In Gamma_ajk_bj::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) : run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) did not converge\n");
In this file we implement the exponential law.
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
Base class for the gamma models.
Array const *const & p_data() const
Parameters param_
parameters of the derived mixture model.
Real meanjk(int j, int k)
get the weighted mean of the jth variable of the kth cluster.
Real variancejk(int j, int k)
get the weighted variance of the jth variable of the kth cluster.
Gamma_ajk_bj is a mixture model of the following form.
bool run(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Compute the weighted mean and the common variance.
GammaBase< Gamma_ajk_bj< Array > > Base
int computeNbFreeParameters() const
~Gamma_ajk_bj()
destructor
void randomInit(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Initialize randomly the parameters of the Gamma mixture.
Gamma_ajk_bj(int nbCluster)
default constructor
Gamma_ajk_bj(Gamma_ajk_bj const &model)
copy constructor
virtual Real rand() const
Generate a pseudo Exponential random variate.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Functor computing the difference between the psi function and a fixed value.
Real findZero(IFunction< Function > const &f, Real const &x0, Real const &x1, Real tol)
find the zero of a function.
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
The namespace STK is the main domain space of the Statistical ToolKit project.
Arithmetic properties of STK fundamental types.
ModelParameters< Clust::Gamma_ajk_bj_ > Parameters
Type of the structure storing the parameters of a Gamma_ajk_bj model.
Main class for the mixtures traits policy.