STK++ 0.9.13
STK_Gamma_ajk_bjk.h
Go to the documentation of this file.
1/*--------------------------------------------------------------------*/
2/* Copyright (C) 2004-2016 Serge Iovleff, Université Lille 1, Inria
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU Lesser General Public License as
6 published by the Free Software Foundation; either version 2 of the
7 License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU Lesser General Public License for more details.
13
14 You should have received a copy of the GNU Lesser General Public
15 License along with this program; if not, write to the
16 Free Software Foundation, Inc.,
17 59 Temple Place,
18 Suite 330,
19 Boston, MA 02111-1307
20 USA
21
22 Contact : S..._DOT_I..._AT_stkpp.org (see copyright for ...)
23*/
24
25/*
26 * Project: stkpp::Clustering
27 * created on: 5 sept. 2013
28 * Author: iovleff, serge.iovleff@stkpp.org
29 **/
30
35#ifndef STK_GAMMA_AJK_BJK_H
36#define STK_GAMMA_AJK_BJK_H
37
39#include "../GammaModels/STK_GammaBase.h"
40
41namespace STK
42{
43template<class Array>class Gamma_ajk_bjk;
44
45namespace hidden
46{
50template<class Array_>
57
58} // namespace Clust
59
69template<class Array>
70class Gamma_ajk_bjk: public GammaBase< Gamma_ajk_bjk<Array> >
71{
72 public:
74 using Base::param_;
75 using Base::p_data;
76 using Base::meanjk;
77 using Base::variancejk;
78
94 void randomInit( CArrayXX const* const& p_tik, CPointX const* const& p_tk) ;
96 bool run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) ;
98 inline int computeNbFreeParameters() const
99 { return 2*this->nbCluster()*p_data()->sizeCols();}
100};
101
102/* Initialize randomly the parameters of the gamma mixture. The centers
103 * will be selected randomly among the data set and the standard-deviation
104 * will be set to 1.
105 */
106template<class Array>
107void Gamma_ajk_bjk<Array>::randomInit( CArrayXX const* const& p_tik, CPointX const* const& p_tk)
108{
109 // compute moments
110 this->moments(p_tik);
111 for (int j=p_data()->beginCols(); j < p_data()->endCols(); ++j)
112 {
113 for (int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
114 {
115 Real mean = meanjk(j,k), variance = variancejk(j,k);
116 param_.shape_[k][j] = Law::Exponential::rand((mean*mean/variance));
117 param_.scale_[k][j] = Law::Exponential::rand((variance/mean));
118 }
119 }
120#ifdef STK_MIXTURE_VERY_VERBOSE
121 stk_cout << _T(" Gamma_ajk_bjk<Array>::randomInit done\n");
122#endif
123}
124
125/* Compute the weighted mean and the common variance. */
126template<class Array>
127bool Gamma_ajk_bjk<Array>::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk)
128{
129 if (!this->moments(p_tik)) { return false;}
130 // estimate a and b
131 for (int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
132 {
133 for (int j=p_data()->beginCols(); j < p_data()->endCols(); ++j)
134 {
135 // moment estimate and oldest value
136 Real x0 = meanjk(j,k)*meanjk(j,k)/variancejk(j,k);
137 Real x1 = param_.shape_[k][j];
138 if ((x0 <=0.) || (isNA(x0))) return false;
139
140 // get shape
141 hidden::invPsiMLog f(param_.meanLog_[k][j]-std::log(param_.mean_[k][j]));
142 Real a = Algo::findZero(f, x0, x1, 1e-08);
144 {
145#ifdef STK_MIXTURE_DEBUG
146 stk_cout << "ML estimation failed in Gamma_ajk_bjk::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) \n";
147 stk_cout << "x0 =" << x0 << _T("\n";);
148 stk_cout << "f(x0) =" << f(x0) << _T("\n";);
149 stk_cout << "x1 =" << x1 << _T("\n";);
150 stk_cout << "f(x1) =" << f(x1) << _T("\n";);
151#endif
152 a = x0; // use moment estimate
153 }
154 // set values
155 param_.shape_[k][j] = a;
156 param_.scale_[k][j] = param_.mean_[k][j]/a;
157 }
158 }
159 return true;
160}
161
162
163} // namespace STK
164
165#endif /* STK_Gamma_AJK_BJK_H */
In this file we implement the exponential law.
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
Base class for the gamma models.
Parameters param_
parameters of the derived mixture model.
Real meanjk(int j, int k)
get the weighted mean of the jth variable of the kth cluster.
Real variancejk(int j, int k)
get the weighted variance of the jth variable of the kth cluster.
Gamma_ajk_bjk is a mixture model of the following form.
Gamma_ajk_bjk(Gamma_ajk_bjk const &model)
copy constructor
bool run(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Compute the run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) .
GammaBase< Gamma_ajk_bjk< Array > > Base
void randomInit(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Initialize randomly the parameters of the Gamma mixture.
int computeNbFreeParameters() const
Gamma_ajk_bjk(int nbCluster)
default constructor
virtual Real rand() const
Generate a pseudo Exponential random variate.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Functor computing the derivative of the lnLikelihood of a gamma_ajk_bjk model.
Real findZero(IFunction< Function > const &f, Real const &x0, Real const &x1, Real tol)
find the zero of a function.
bool isNA(Type const &x)
utility method allowing to know if a value is a NA (Not Available) value
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
The namespace STK is the main domain space of the Statistical ToolKit project.
Arithmetic properties of STK fundamental types.
ModelParameters< Clust::Gamma_ajk_bjk_ > Parameters
Type of the structure storing the parameters of a Gamma_ajk_bjk model.
Main class for the mixtures traits policy.