35#ifndef STK_GAMMA_AJK_BK_H
36#define STK_GAMMA_AJK_BK_H
40#include "../GammaModels/STK_GammaBase.h"
47template<
class Array>
class Gamma_ajk_bk;
114 this->moments(p_tik);
115 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
118 for (
int j=p_data()->beginCols();
j < p_data()->endCols(); ++
j)
120 Real mean = meanjk(
j,k), variance = variancejk(
j,k);
122 value += variance/
mean;
126#ifdef STK_MIXTURE_VERY_VERBOSE
127 stk_cout <<
_T(
" Gamma_ajk_bk<Array>::randomInit done\n");
135 if (!this->moments(p_tik)) {
return false;}
140 for(iter = 0; iter<
MAXITER; ++iter)
143 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
145 for (
int j=p_data()->beginCols();
j<p_data()->endCols(); ++
j)
148 Real x0 = meanjk(
j,k)*meanjk(
j,k)/variancejk(
j,k);
157 param_.shape_[k][
j] =
x0;
158#ifdef STK_MIXTURE_DEBUG
159 stk_cout <<
_T(
"ML estimation failed in Gamma_ajk_bj::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) \n");
166 else { param_.shape_[k][
j] = a;}
169 param_.scale_[k] = param_.mean_[k].sum()/ param_.shape_[k].sum();
172 Real value = this->qValue(p_tik, p_tk);
173#ifdef STK_MIXTURE_VERBOSE
176 stk_cout <<
_T(
"In Gamma_ajk_bk::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) : run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) diverge\n");
183#ifdef STK_MIXTURE_VERBOSE
186 stk_cout <<
_T(
"In Gamma_ajk_bk::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) : run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) did not converge\n");
In this file we implement the exponential law.
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
Base class for the gamma models.
Array const *const & p_data() const
Parameters param_
parameters of the derived mixture model.
Real meanjk(int j, int k)
get the weighted mean of the jth variable of the kth cluster.
Real variancejk(int j, int k)
get the weighted variance of the jth variable of the kth cluster.
Gamma_ajk_bk is a mixture model of the following form.
~Gamma_ajk_bk()
destructor
GammaBase< Gamma_ajk_bk< Array > > Base
bool run(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Compute the run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) .
Gamma_ajk_bk(Gamma_ajk_bk const &model)
copy constructor
Gamma_ajk_bk(int nbCluster)
default constructor
void randomInit(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Initialize randomly the parameters of the Gamma mixture.
int computeNbFreeParameters() const
virtual Real rand() const
Generate a pseudo Exponential random variate.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Functor computing the difference between the psi function and a fixed value.
Real findZero(IFunction< Function > const &f, Real const &x0, Real const &x1, Real tol)
find the zero of a function.
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
The namespace STK is the main domain space of the Statistical ToolKit project.
Arithmetic properties of STK fundamental types.
ModelParameters< Clust::Gamma_ajk_bk_ > Parameters
Type of the structure storing the parameters of a Gamma_ajk_bk model.
Main class for the mixtures traits policy.