36#ifndef STK_GAMMA_AK_B_H
37#define STK_GAMMA_AK_B_H
40#include "../GammaModels/STK_GammaBase.h"
47template<
class Array>
class Gamma_ak_b;
111 this->moments(p_tik);
114 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
116 Real mean = this->meank(k), variance = this->variancek(k);
118 value += p_tk->elt(k) * variance/
mean;
122#ifdef STK_MIXTURE_VERY_VERBOSE
123 stk_cout <<
_T(
" Gamma_ak_b<Array>::randomInit done\n");
131 if (!this->moments(p_tik)) {
return false;}
135 for(iter=0; iter<
MAXITER; ++iter)
139 for (
int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
142 Real x0 = (param_.mean_[k].square()/param_.variance_[k]).
mean();
143 Real x1 = param_.shape_[k];
147 hidden::invPsi f((param_.meanLog_[k] - std::log(param_.scale_)).mean());
152 param_.shape_[k]=
x0;
153#ifdef STK_MIXTURE_DEBUG
154 stk_cout <<
_T(
"ML estimation failed in Gamma_ak_bj::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) \n");
161 else { param_.shape_[k]= a;}
163 num += this->meank(k) * p_tk->elt(k);
164 den += param_.shape_[k] * p_tk->elt(k);
172 Real value = this->qValue(p_tik, p_tk);
173#ifdef STK_MIXTURE_DEBUG
176 stk_cout <<
_T(
"In Gamma_ak_b::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) : run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) diverge\n");
183#ifdef STK_MIXTURE_DEBUG
186 stk_cout <<
_T(
"In Gamma_ak_b::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) : run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) did not converge\n");
In this file we implement the exponential law.
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
Base class for the gamma models.
Array const *const & p_data() const
Parameters param_
parameters of the derived mixture model.
Real meanjk(int j, int k)
get the weighted mean of the jth variable of the kth cluster.
Real variancejk(int j, int k)
get the weighted variance of the jth variable of the kth cluster.
Gamma_ak_b is a mixture model of the following form.
int computeNbFreeParameters() const
GammaBase< Gamma_ak_b< Array > > Base
void randomInit(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Initialize randomly the parameters of the Gaussian mixture.
bool run(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Compute the weighted mean and the common variance.
Gamma_ak_b(int nbCluster)
default constructor
Gamma_ak_b(Gamma_ak_b const &model)
copy constructor
virtual Real rand() const
Generate a pseudo Exponential random variate.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Functor computing the difference between the psi function and a fixed value.
Real findZero(IFunction< Function > const &f, Real const &x0, Real const &x1, Real tol)
find the zero of a function.
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
The namespace STK is the main domain space of the Statistical ToolKit project.
Arithmetic properties of STK fundamental types.
static bool isFinite(Type const &x)
ModelParameters< Clust::Gamma_ak_b_ > Parameters
Type of the structure storing the parameters of a Gamma_ak_b model.
Main class for the mixtures traits policy.