STK++ 0.9.13
STK_Gamma_ak_b.h
Go to the documentation of this file.
1/*--------------------------------------------------------------------*/
2/* Copyright (C) 2004-2016 Serge Iovleff, Université Lille 1, Inria
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU Lesser General Public License as
6 published by the Free Software Foundation; either version 2 of the
7 License, or (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU Lesser General Public License for more details.
13
14 You should have received a copy of the GNU Lesser General Public
15 License along with this program; if not, write to the
16 Free Software Foundation, Inc.,
17 59 Temple Place,
18 Suite 330,
19 Boston, MA 02111-1307
20 USA
21
22 Contact : S..._Dot_I..._At_stkpp_Dot_org (see copyright for ...)
23*/
24
25/*
26 * Project: stkpp::Clustering
27 * created on: 29 août 2014
28 * Author: iovleff, S..._Dot_I..._At_stkpp_Dot_org (see copyright for ...)
29 **/
30
36#ifndef STK_GAMMA_AK_B_H
37#define STK_GAMMA_AK_B_H
38
40#include "../GammaModels/STK_GammaBase.h"
41
42#define MAXITER 400
43#define TOL 1e-8
44
45namespace STK
46{
47template<class Array>class Gamma_ak_b;
48
49namespace hidden
50{
53template<class Array_>
60
61} // namespace hidden
62
72template<class Array>
73class Gamma_ak_b: public GammaBase<Gamma_ak_b<Array> >
74{
75 public:
77 using Base::param_;
78 using Base::p_data;
79 using Base::meanjk;
80 using Base::variancejk;
81
96 void randomInit( CArrayXX const* const& p_tik, CPointX const* const& p_tk) ;
98 bool run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) ;
100 inline int computeNbFreeParameters() const { return this->nbCluster() + 1;}
101};
102
103/* Initialize randomly the parameters of the Gaussian mixture. The centers
104 * will be selected randomly among the data set and the standard-deviation
105 * will be set to 1.
106 */
107template<class Array>
108void Gamma_ak_b<Array>::randomInit( CArrayXX const* const& p_tik, CPointX const* const& p_tk)
109{
110 // compute moments
111 this->moments(p_tik);
112 // simulates ak
113 Real value = 0.;
114 for (int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
115 {
116 Real mean = this->meank(k), variance = this->variancek(k);
117 param_.shape_[k]= Law::Exponential::rand((mean*mean/variance));
118 value += p_tk->elt(k) * variance/mean;
119 }
120 // simulate b
121 param_.scale_ = Law::Exponential::rand(value/(this->nbSample()));
122#ifdef STK_MIXTURE_VERY_VERBOSE
123 stk_cout << _T(" Gamma_ak_b<Array>::randomInit done\n");
124#endif
125}
126
127/* Compute the weighted mean and the common variance. */
128template<class Array>
129bool Gamma_ak_b<Array>::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk)
130{
131 if (!this->moments(p_tik)) { return false;}
132 // start estimations of the ajk and bj
133 Real qvalue = this->qValue(p_tik, p_tk);
134 int iter;
135 for(iter=0; iter<MAXITER; ++iter)
136 {
137 // compute ak
138 Real num = 0., den = 0.;
139 for (int k= p_tik->beginCols(); k < p_tik->endCols(); ++k)
140 {
141 // moment estimate and oldest value
142 Real x0 = (param_.mean_[k].square()/param_.variance_[k]).mean();
143 Real x1 = param_.shape_[k];
144 if ((x0 <=0.) || !Arithmetic<Real>::isFinite(x0)) return false;
145
146 // compute shape
147 hidden::invPsi f((param_.meanLog_[k] - std::log(param_.scale_)).mean());
148 Real a = Algo::findZero(f, x0, x1, TOL);
149
151 {
152 param_.shape_[k]= x0; // use moment estimate
153#ifdef STK_MIXTURE_DEBUG
154 stk_cout << _T("ML estimation failed in Gamma_ak_bj::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) \n");
155 stk_cout << "x0 =" << x0 << _T("\n";);
156 stk_cout << "f(x0) =" << f(x0) << _T("\n";);
157 stk_cout << "x1 =" << x1 << _T("\n";);
158 stk_cout << "f(x1) =" << f(x1) << _T("\n";);
159#endif
160 }
161 else { param_.shape_[k]= a;}
162 // update num and den
163 num += this->meank(k) * p_tk->elt(k);
164 den += param_.shape_[k] * p_tk->elt(k);
165 }
166 // compute b
167 Real b = num/den;
168 // divergence
169 if (!Arithmetic<Real>::isFinite(b)) { return false;}
170 param_.scale_ = b;
171 // check convergence
172 Real value = this->qValue(p_tik, p_tk);
173#ifdef STK_MIXTURE_DEBUG
174 if (value < qvalue)
175 {
176 stk_cout << _T("In Gamma_ak_b::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) : run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) diverge\n");
177 stk_cout << _T("New value =") << value << _T(", qvalue =") << qvalue << _T("\n");
178 }
179#endif
180 if ((value - qvalue) < TOL) break;
181 qvalue = value;
182 }
183#ifdef STK_MIXTURE_DEBUG
184 if (iter == MAXITER)
185 {
186 stk_cout << _T("In Gamma_ak_b::run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) : run( CArrayXX const* const& p_tik, CPointX const* const& p_tk) did not converge\n");
187 stk_cout << _T("qvalue =") << qvalue << _T("\n");
188 }
189#endif
190 return true;
191}
192
193} // namespace STK
194
195#undef MAXITER
196#undef TOL
197
198#endif /* STK_Gamma_AK_B_H */
#define TOL
In this file we implement the exponential law.
#define MAXITER
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
Base class for the gamma models.
Parameters param_
parameters of the derived mixture model.
Real meanjk(int j, int k)
get the weighted mean of the jth variable of the kth cluster.
Real variancejk(int j, int k)
get the weighted variance of the jth variable of the kth cluster.
Gamma_ak_b is a mixture model of the following form.
int computeNbFreeParameters() const
GammaBase< Gamma_ak_b< Array > > Base
~Gamma_ak_b()
destructor
void randomInit(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Initialize randomly the parameters of the Gaussian mixture.
bool run(CArrayXX const *const &p_tik, CPointX const *const &p_tk)
Compute the weighted mean and the common variance.
Gamma_ak_b(int nbCluster)
default constructor
Gamma_ak_b(Gamma_ak_b const &model)
copy constructor
virtual Real rand() const
Generate a pseudo Exponential random variate.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Functor computing the difference between the psi function and a fixed value.
Real findZero(IFunction< Function > const &f, Real const &x0, Real const &x1, Real tol)
find the zero of a function.
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
The namespace STK is the main domain space of the Statistical ToolKit project.
Arithmetic properties of STK fundamental types.
static bool isFinite(Type const &x)
ModelParameters< Clust::Gamma_ak_b_ > Parameters
Type of the structure storing the parameters of a Gamma_ak_b model.
Main class for the mixtures traits policy.