37#ifndef STK_JOINTGAUSSIANMODEL_H
38#define STK_JOINTGAUSSIANMODEL_H
101template <
class Array,
class WColVector = CVectorX>
106 typedef typename Array::Type
Type;
130 {
return 2*
p_data()->sizeCols();}
In this file we define the class IMultiStatModel.
In this file we define the Normal probability law class.
This file contain the functors computings statistics.
Derived & resize(Range const &I, Range const &J)
resize the array.
Interface base class for the parameters of a multivariate model.
Range const & range() const
Interface base class for all Multivariate Statistical Models.
hidden::StatModelTraits< Derived >::WColVector WColVector
Type of the vector with the weights.
Data const *const p_data() const
A joint Gaussian model is a statistical model of the form: following form.
hidden::Traits< Array >::Row RowVector
Type of the row vector of the container.
hidden::Traits< Array >::Col ColVector
Type of the column vector of the container.
virtual void computeParameters(WColVector const &weights)
compute the weighted parameters
JointGaussianModel(Array const &data)
Constructor with data set.
JointGaussianModel(Array const *p_data)
Constructor with a ptr on the data set.
Data const *const p_data() const
virtual int computeNbFreeParameters() const
compute the number of free parameters
JointGaussianModel(JointGaussianModel const &model)
Copy constructor.
JointGaussianModel()
default constructor.
IMultiStatModel< Array, WColVector, JointGaussianParameters > Base
Base class.
Array::Type Type
Type of the data contained in the container.
JointGaussianModel * clone() const
clone pattern.
virtual void computeParameters()
compute the parameters
virtual ~JointGaussianModel()
destructor
virtual Real computeLnLikelihood(RowVector const &rowData) const
compute the log Likelihood of an observation.
virtual Real lpdf(Real const &x) const
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
Index sub-vector region: Specialization when the size is unknown.
Arrays::SumOp< Lhs, Rhs >::result_type sum(Lhs const &lhs, Rhs const &rhs)
convenience function for summing two arrays
double Real
STK fundamental type of Real values.
hidden::SliceVisitorSelector< Derived, hidden::MeanVisitor, Arrays::by_col_ >::type_result mean(Derived const &A)
If A is a row-vector or a column-vector then the function will return the usual mean value of the vec...
hidden::FunctorTraits< Derived, VarianceWithFixedMeanOp >::Row varianceWithFixedMean(Derived const &A, MeanType const &mean, bool unbiased)
Compute the VarianceWithFixedMean(s) value(s) of A.
The namespace STK is the main domain space of the Statistical ToolKit project.
Structure encapsulating the parameters of a Joint Gaussian model.
Real const sigma(int const &j) const
void setMu(int const &j, Real const &mu)
set the mean of the jth law
~JointGaussianParameters()
destructor
Array2DPoint< Real > const & sigma() const
void setSigma(int const &j, Real const &sigma)
set the standard deviation of the jth law
JointGaussianParameters(Range const &range)
default constructor
void resizeImpl(Range const &range)
resize the set of parameter
JointGaussianParameters()
default constructor
JointGaussianParameters(JointGaussianParameters const ¶m)
copy constructor.
Array2DPoint< Real > const & mu() const
Real const mu(int const &j) const
Array2DPoint< Real > sigma_