46#ifdef STK_MIXTURE_VERY_VERBOSE
47 stk_cout <<
_T(
"--------------------------------\n");
48 stk_cout <<
_T(
"Entering ImputeAlgo::run() with:\n")
65#ifdef STK_MIXTURE_VERY_VERBOSE
66 stk_cout <<
_T(
"Terminating ImputeAlgo::run() with:\n")
67 <<
_T(
"iter = ") << iter <<
_T(
"\n")
77#ifdef STK_MIXTURE_VERBOSE
78 stk_cout <<
_T(
"In ImputeAlgo::run() iteration ") << iter <<
_T(
"terminated.\n")
85#ifdef STK_MIXTURE_VERBOSE
95#ifdef STK_MIXTURE_VERBOSE
96 stk_cout <<
_T(
"-------------------------------\n");
97 stk_cout <<
_T(
"Entering SimulAlgo::run() with:\n")
101#ifdef STK_MIXTURE_VERY_VERBOSE
115#ifdef STK_MIXTURE_VERBOSE
116 stk_cout <<
_T(
"In SimulAlgo::run() iterations terminated.\n")
119#ifdef STK_MIXTURE_VERY_VERBOSE
128#ifdef STK_MIXTURE_VERBOSE
138#ifdef STK_MIXTURE_VERY_VERBOSE
139 stk_cout <<
_T(
"\nIn SimulAlgo::run(), setParameters done.\n")
145#ifdef STK_MIXTURE_VERY_VERBOSE
146 stk_cout <<
_T(
"Terminating SimulAlgo::run()\n");
147 stk_cout <<
_T(
"----------------------------\n");
149#ifdef STK_MIXTURE_VERY_VERBOSE
In this file we define the interface base class for learners.
In this file we define learning mixture algorithms.
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
This file include all the other header files of the project Sdk.
Real epsilon_
tolerance of the algorithm.
IMixtureLearner * p_model_
pointer on the mixture model
int nbIterMax_
maximal number of iterations of the algorithm
virtual void paramUpdateStep()=0
Compute the model parameters given the current mixture parameters and imputation/simulation of the mi...
virtual void mapStep()
Compute ziPred using the Map estimate.
virtual void writeParameters(ostream &os) const
write the parameters of the model in the stream os.
virtual void imputationStep()
Impute the missing values.
virtual void finalizeStep()
Finalize the estimation of the model.
virtual void releaseIntermediateResults()
This step can be used to signal to the mixtures that they must release the stored results.
virtual void storeIntermediateResults(int iteration)
This step can be used to signal to the mixtures that they must store results.
virtual void samplingStep()
Simulation of all the latent variables and/or missing data excluding class labels.
String msg_error_
String with the last error message.
String const & error() const
get the last error message.
Real lnLikelihood() const
virtual bool run()
run the algorithm on the model calling the eStep and mStep of the model until the maximal number of i...
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
virtual bool run()
run the algorithm on the model calling sStep, mStep and eStep of the model until the maximal number o...
String exceptionToString(exceptions const &type)
convert a Clust::exceptions to a String.
exceptions
Specific exceptions allowing to handle the erroros that can occur in the estimation process.
double Real
STK fundamental type of Real values.
The namespace STK is the main domain space of the Statistical ToolKit project.