47#ifdef STK_MIXTURE_VERBOSE
48 stk_cout <<
_T(
"-------------------------------\n");
49 stk_cout <<
_T(
"Entering EMPredict::run() with:\n")
71#ifdef STK_MIXTURE_VERY_VERBOSE
72 stk_cout <<
_T(
"Terminating EMPredict::run() with:\n")
73 <<
_T(
"iter = ") << iter <<
_T(
"\n")
80#ifdef STK_MIXTURE_VERBOSE
81 stk_cout <<
_T(
"In EMPredict::run() iteration ") << iter <<
_T(
"terminated.\n")
88#ifdef STK_MIXTURE_VERBOSE
98#ifdef STK_MIXTURE_VERBOSE
107#ifdef STK_MIXTURE_VERY_VERBOSE
108 stk_cout <<
_T(
"Terminating EMPredict::run()\n");
109 stk_cout <<
_T(
"----------------------------\n");
119#ifdef STK_MIXTURE_VERY_VERBOSE
120 stk_cout <<
_T(
"------------------------------------\n");
121 stk_cout <<
_T(
"Entering SemiSEMPredict::run() with:\n");
146#ifdef STK_MIXTURE_VERBOSE
157#ifdef STK_MIXTURE_VERBOSE
165#ifdef STK_MIXTURE_VERBOSE
166 stk_cout <<
_T(
"In SemiSEMPredict::run() iterations terminated.\n")
173#ifdef STK_MIXTURE_VERY_VERBOSE
174 stk_cout <<
_T(
"Terminating SemiSEMPredict::run()\n");
175 stk_cout <<
_T(
"---------------------------------\n");
In this file we define the abstract base class for mixture models.
In this file we define algorithms for predicting in a mixture model.
#define stk_cout
Standard stk output stream.
#define _T(x)
Let x unmodified.
This file include all the other header files of the project Sdk.
virtual bool run()
run the algorithm on the model until the maximal number of iteration or the threshold is reached.
Sdk class for all library Exceptions.
bool predictBayesClassifier()
predict class labels when there is no missing values.
int nbIterLong_
maximal number of iterations of the algorithm
bool burnStep()
Perform burn step using SEM algorithm.
int nbIterBurn_
Number of burning iterations of the algorithm.
Real epsilon_
tolerance of the algorithm.
IMixtureComposer * p_model_
pointer on the mixture model
virtual void initializeStep()
Initialize the model before its first use.
virtual Real eStep()
compute the zi, the lnLikelihood of the current estimates and the next value of the tik.
virtual void mapStep()
Compute zi using the Map estimate.
virtual void finalizeStep()
Finalize the estimation of the model.
int computeNbMissingValues() const
compute the missing values of the model.
virtual void imputationStep()
Impute the missing values.
virtual void setParametersStep()
Utility method allowing to signal to a mixture to set its parameters.
virtual void storeIntermediateResults(int iteration)
This step can be used to signal to the mixtures that they must store results.
virtual void samplingStep()
Simulation of all the latent variables and/or missing data excluding class labels.
String msg_error_
String with the last error message.
String const & error() const
get the last error message.
Real lnLikelihood() const
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
virtual bool run()
run the algorithm on the model until the maximal number of iteration is reached.
String exceptionToString(exceptions const &type)
convert a Clust::exceptions to a String.
exceptions
Specific exceptions allowing to handle the erroros that can occur in the estimation process.
double Real
STK fundamental type of Real values.
The namespace STK is the main domain space of the Statistical ToolKit project.