32#ifndef STK_PROJECTEDVARIANCE_H
33#define STK_PROJECTEDVARIANCE_H
132#ifdef STK_REDUCT_DEBUG
146#ifdef STK_REDUCT_DEBUG
162 Range range(p_data_->beginCols(), std::min(
this->dim_, p_data_->sizeCols()));
164 axis_.resize(p_data_->cols(), range);
165 idx_values_.resize(range);
166 axis_ =
eigen.rotation().col(range);
167 idx_values_ =
eigen.eigenValues().sub(range);
In this file we define the interface base class ILinearReduct.
#define STKRUNTIME_ERROR_NO_ARG(Where, Error)
In this file we specialize the class Multivariate to Real type.
In this file we define the SymEigen class (for a symmetric matrix).
A ILinearReduct is an interface base class for reduction method using linear reduction.
Array * p_reduced_
The reduced data set.
Array axis_
The computed axis.
VectorX idx_values_
The values of the index for each axis.
virtual bool run()
run the computations.
Array const * p_data() const
get the data set
Array const * p_data_
A pointer on the original data set.
The MultidimRegression class allows to regress a multidimensional output variable among a multivariat...
A ProjectedVariance is an implementation of the abstract ILinearReduct interface.
void computeAxis()
compute axis and index.
virtual void maximizeStep()
Find the axis by maximizing the Index.
virtual ProjectedVariance * clone() const
clone pattern
ProjectedVariance()
default constructor
virtual void update()
update the class if a new data set is set.
ILinearReduct< Array, VectorX > Base
ArraySquareX covariance_
the covariance Array
virtual ~ProjectedVariance()
Destructor.
Index sub-vector region: Specialization when the size is unknown.
Real covariance(ExprBase< XArray > const &X, ExprBase< YArray > const &Y, bool unbiased=false)
Compute the covariance of the variables X and Y.
The namespace STK is the main domain space of the Statistical ToolKit project.