STK++ 0.9.13
|
Main class for HD matrix valued matrix models. More...
#include <STK_HDMatrixGaussianModel.h>
Public Types | |
typedef IMixtureDensity< HDMatrixGaussianModel< IdRow_, IdCol_, Array_ > > | Base |
Base class. | |
typedef HDMatrixModelParameters< Array_ > | Parameters |
Type of the structure storing the parameters of a MixturGaussian_sjk model. | |
![]() | |
typedef hidden::MixtureTraits< HDMatrixGaussianModel< IdRow_, IdCol_, Array_ > >::Array | Array |
typedef hidden::MixtureTraits< HDMatrixGaussianModel< IdRow_, IdCol_, Array_ > >::Parameters | Parameters |
typedef hidden::Traits< Array >::Type | Type |
Public Member Functions | |
HDMatrixGaussianModel (int nbCluster) | |
constructor | |
HDMatrixGaussianModel (HDMatrixGaussianModel const &model) | |
constructor | |
~HDMatrixGaussianModel () | |
destructor | |
void | randomInit (CArrayXX const *const &p_tik, CPointX const *const &p_tk) |
Initialize randomly the parameters of the Gaussian mixture. | |
bool | run (CArrayXX const *const &p_tik, CPointX const *const &p_tk) |
Compute the weighted mean and the common standard deviation. | |
int | computeNbFreeParameters () const |
![]() | |
~IMixtureDensity () | |
destructor | |
int | nbCluster () const |
int | nbSample () const |
Real | lnNbSample () const |
Array const *const & | p_data () const |
Parameters const & | param () const |
void | setData (Array const &data) |
Set the data set. | |
void | setData (Array const &data, int nbRow, int nbCol, bool byRow=true) |
Set the data set and give dimensions. | |
bool | initializeStep () |
This function will be called at the beginning of the estimation process once the model is created and data is set. | |
void | setParametersStep () |
set the parameters obtained with the intermediate results and release the intermediate results. | |
void | finalizeStep () |
This function will be called once the model is estimated. | |
Type | sample (int i, int j, Weights const &tk) const |
![]() | |
Derived & | asDerived () |
static cast : return a reference of this with a cast to the derived class. | |
Derived const & | asDerived () const |
static cast : return a const reference of this with a cast to the derived class. | |
Derived * | asPtrDerived () |
static cast : return a ptr on a Derived of this with a cast to the derived class. | |
Derived const * | asPtrDerived () const |
static cast : return a ptr on a constant Derived of this with a cast to the derived class. | |
Derived * | clone () const |
create a leaf using the copy constructor of the Derived class. | |
Derived * | clone (bool isRef) const |
create a leaf using the copy constructor of the Derived class and a flag determining if the clone is a reference or not. | |
Protected Attributes | |
int | nbRow_ |
number of rows and columns of the data | |
int | nbCol_ |
bool | isRowAj_ |
Structure of the covariance matrices between clusters for the rows. | |
bool | isRowAk_ |
bool | isRowBk_ |
bool | isRowQk_ |
bool | isRowDk_ |
bool | isColAj_ |
Structure of the covariance matrices between clusters for the columns. | |
bool | isColAk_ |
bool | isColBk_ |
bool | isColQk_ |
bool | isColDk_ |
![]() | |
Parameters | param_ |
parameters of the derived mixture model. | |
Private Member Functions | |
bool | runFreeOrientationByRow (CArrayXX const *const &p_tik, CPointX const *const &p_tk) |
Update parameters for models with free orientation by rows. | |
bool | runCommonOrientationByRow (CArrayXX const *const &p_tik, CPointX const *const &p_tk) |
Update parameters for models with common orientation by rows. | |
bool | runFreeOrientationByCol (CArrayXX const *const &p_tik, CPointX const *const &p_tk) |
Update parameters for models with free orientation by columns. | |
bool | runCommonOrientationByCol (CArrayXX const *const &p_tik, CPointX const *const &p_tk) |
Update parameters for models with common orientation by columns. | |
Additional Inherited Members | |
![]() | |
IMixtureDensity (int nbCluster) | |
Default constructor. | |
IMixtureDensity (IMixtureDensity const &model) | |
copy constructor. | |
void | initializeModel () |
Initialize the model before its first use. | |
bool | initializeStepImpl () |
default implementation of initializeStepImpl (do nothing and return true) | |
void | finalizeStepImpl () |
default implementation of finalizeStepImpl (do nothing) | |
void | setNbSample (int nbSample) |
Set the number of sample of the model (needed by kernel models) | |
![]() | |
IRecursiveTemplate () | |
constructor. | |
~IRecursiveTemplate () | |
destructor. | |
Main class for HD matrix valued matrix models.
Definition at line 67 of file STK_HDMatrixGaussianModel.h.
typedef IMixtureDensity<HDMatrixGaussianModel<IdRow_, IdCol_, Array_> > STK::HDMatrixGaussianModel< IdRow_, IdCol_, Array_ >::Base |
Base class.
Definition at line 72 of file STK_HDMatrixGaussianModel.h.
typedef HDMatrixModelParameters<Array_> STK::HDMatrixGaussianModel< IdRow_, IdCol_, Array_ >::Parameters |
Type of the structure storing the parameters of a MixturGaussian_sjk model.
Definition at line 74 of file STK_HDMatrixGaussianModel.h.
|
inline |
constructor
nbCluster | number of clusters |
Definition at line 84 of file STK_HDMatrixGaussianModel.h.
|
inline |
constructor
nbCluster | number of clusters |
Definition at line 100 of file STK_HDMatrixGaussianModel.h.
|
inline |
int STK::HDMatrixGaussianModel< IdRow_, IdCol_, Array_ >::computeNbFreeParameters | ( | ) | const |
Definition at line 146 of file STK_HDMatrixGaussianModel.h.
References STK::sum().
void STK::HDMatrixGaussianModel< IdRow_, IdCol_, Array_ >::randomInit | ( | CArrayXX const *const & | p_tik, |
CPointX const *const & | p_tk | ||
) |
Initialize randomly the parameters of the Gaussian mixture.
The centers will be selected randomly among the data set and the standard-deviation will be set to 1.
Definition at line 184 of file STK_HDMatrixGaussianModel.h.
References STK::Law::Exponential::rand(), STK::Law::Normal::rand(), and STK::Law::UniformDiscrete::rand().
bool STK::HDMatrixGaussianModel< IdRow_, IdCol_, Array_ >::run | ( | CArrayXX const *const & | p_tik, |
CPointX const *const & | p_tk | ||
) |
Compute the weighted mean and the common standard deviation.
Definition at line 177 of file STK_HDMatrixGaussianModel.h.
|
private |
Update parameters for models with common orientation by columns.
|
private |
Update parameters for models with common orientation by rows.
|
private |
Update parameters for models with free orientation by columns.
|
private |
Update parameters for models with free orientation by rows.
Definition at line 221 of file STK_HDMatrixGaussianModel.h.
|
protected |
Structure of the covariance matrices between clusters for the columns.
Definition at line 132 of file STK_HDMatrixGaussianModel.h.
|
protected |
Definition at line 132 of file STK_HDMatrixGaussianModel.h.
|
protected |
Definition at line 132 of file STK_HDMatrixGaussianModel.h.
|
protected |
Definition at line 132 of file STK_HDMatrixGaussianModel.h.
|
protected |
Definition at line 132 of file STK_HDMatrixGaussianModel.h.
|
protected |
Structure of the covariance matrices between clusters for the rows.
Definition at line 130 of file STK_HDMatrixGaussianModel.h.
|
protected |
Definition at line 130 of file STK_HDMatrixGaussianModel.h.
|
protected |
Definition at line 130 of file STK_HDMatrixGaussianModel.h.
|
protected |
Definition at line 130 of file STK_HDMatrixGaussianModel.h.
|
protected |
Definition at line 130 of file STK_HDMatrixGaussianModel.h.
|
protected |
Definition at line 128 of file STK_HDMatrixGaussianModel.h.
|
protected |
number of rows and columns of the data
Definition at line 128 of file STK_HDMatrixGaussianModel.h.