STK++ 0.9.13
|
A DiagGaussian_muj_sj model is a statistical model of the form: following form. More...
#include <STK_ModelDiagGaussian_muj_sj.h>
Public Member Functions | |
ModelDiagGaussian_muj_sj () | |
default constructor. | |
ModelDiagGaussian_muj_sj (Data const &data) | |
Constructor with data set. | |
ModelDiagGaussian_muj_sj (Data const *p_data) | |
Constructor with a ptr on the data set. | |
ModelDiagGaussian_muj_sj (ModelDiagGaussian_muj_sj const &model) | |
Copy constructor. | |
~ModelDiagGaussian_muj_sj () | |
destructor | |
CPointX const & | mean () const |
CPointX const & | sigma () const |
vector of the mean log of the observations | |
int | computeNbFreeParameters () const |
compute the number of free parameters | |
Real | computeLnLikelihood (RowVector const &rowData) const |
compute the log Likelihood of an observation. | |
void | computeParameters () |
compute the parameters | |
void | computeParameters (WColVector const &weights) |
compute the weighted parameters | |
void | writeParametersImpl (ostream &os) const |
Write the parameters on the output stream os. | |
![]() | |
Data const *const | p_data () const |
Parameters const & | param () const |
String const & | error () const |
void | setData (Data const *p_data) |
Set the data set. | |
bool | run () |
Estimate the parameters of the model and update the model. | |
bool | run (WColVector const &weights) |
compute the weighted empirical probability of success based on the observed variables. | |
void | writeParameters (ostream &os) |
void | writeParametersImpl (ostream &os) |
default implementation of the writeParameters method. | |
![]() | |
int | nbSample () const |
Real | lnNbSample () const |
int | nbVariable () const |
Real | lnLikelihood () const |
Real | likelihood () const |
int | nbFreeParameter () const |
Real | computeBIC () const |
Real | computeAIC () const |
Real | computeML () const |
![]() | |
Derived & | asDerived () |
static cast : return a reference of this with a cast to the derived class. | |
Derived const & | asDerived () const |
static cast : return a const reference of this with a cast to the derived class. | |
Derived * | asPtrDerived () |
static cast : return a ptr on a Derived of this with a cast to the derived class. | |
Derived const * | asPtrDerived () const |
static cast : return a ptr on a constant Derived of this with a cast to the derived class. | |
Derived * | clone () const |
create a leaf using the copy constructor of the Derived class. | |
Derived * | clone (bool isRef) const |
create a leaf using the copy constructor of the Derived class and a flag determining if the clone is a reference or not. | |
Additional Inherited Members | |
![]() | |
IMultiStatModel () | |
default constructor. | |
IMultiStatModel (Data const &data) | |
Constructor with data set. | |
IMultiStatModel (Data const *p_data) | |
Constructor with a ptr on the data set. | |
IMultiStatModel (IMultiStatModel const &model) | |
Copy constructor. | |
~IMultiStatModel () | |
destructor | |
Parameters & | param () |
Real | computeLnLikelihood () const |
compute the log Likelihood of the statistical model. | |
void | update () |
update the model if a new data set is set | |
![]() | |
IStatModelBase () | |
Default constructor. | |
IStatModelBase (int nbSample) | |
Constructor with specified dimension. | |
IStatModelBase (int nbSample, int nbVariable) | |
Constructor with specified dimension. | |
IStatModelBase (IStatModelBase const &model) | |
Copy constructor. | |
~IStatModelBase () | |
destructor | |
void | setNbFreeParameter (int const &nbFreeParameter) |
set the number of free parameters of the model | |
void | setNbSample (int const &nbSample) |
set the number of samples of the model | |
void | setNbVariable (int const &nbVariable) |
set the number of variables of the model | |
void | setLnLikelihood (Real const &lnLikelihood) |
set the log-likelihood of the model | |
void | initialize (int nbSample, int nbVariable) |
set the dimensions of the parameters of the model | |
![]() | |
IRecursiveTemplate () | |
constructor. | |
~IRecursiveTemplate () | |
destructor. | |
![]() | |
Data const * | p_data_ |
Pointer on the parameters of the model. | |
Parameters | param_ |
Pointer on the parameters of the model. | |
String | msg_error_ |
String with the last error message. | |
A DiagGaussian_muj_sj model is a statistical model of the form: following form.
Definition at line 132 of file STK_ModelDiagGaussian_muj_sj.h.
typedef IMultiStatModel< ModelDiagGaussian_muj_sj<Data_, WColVector_> > STK::ModelDiagGaussian_muj_sj< Data_, WColVector_ >::Base |
Base class.
Definition at line 146 of file STK_ModelDiagGaussian_muj_sj.h.
Type of the container storing the data.
Definition at line 136 of file STK_ModelDiagGaussian_muj_sj.h.
typedef DiagGaussian_muj_sjParameters STK::ModelDiagGaussian_muj_sj< Data_, WColVector_ >::Parameters |
Type of the row vector of the container.
Type of the parameters of the ModelDiagGaussian_muj_sj
Definition at line 144 of file STK_ModelDiagGaussian_muj_sj.h.
typedef hidden::Traits<Data_>::Row STK::ModelDiagGaussian_muj_sj< Data_, WColVector_ >::RowVector |
Definition at line 137 of file STK_ModelDiagGaussian_muj_sj.h.
typedef hidden::Traits<Data_>::Type STK::ModelDiagGaussian_muj_sj< Data_, WColVector_ >::Type |
Type of the data in the container.
Definition at line 141 of file STK_ModelDiagGaussian_muj_sj.h.
typedef WColVector_ STK::ModelDiagGaussian_muj_sj< Data_, WColVector_ >::WColVector |
Type of the array storing the weights of the data.
Definition at line 139 of file STK_ModelDiagGaussian_muj_sj.h.
|
inline |
default constructor.
Definition at line 151 of file STK_ModelDiagGaussian_muj_sj.h.
|
inline |
Constructor with data set.
Definition at line 153 of file STK_ModelDiagGaussian_muj_sj.h.
|
inline |
Constructor with a ptr on the data set.
Definition at line 155 of file STK_ModelDiagGaussian_muj_sj.h.
|
inline |
Copy constructor.
Definition at line 157 of file STK_ModelDiagGaussian_muj_sj.h.
|
inline |
Real STK::ModelDiagGaussian_muj_sj< Data_, WColVector_ >::computeLnLikelihood | ( | RowVector const & | rowData | ) | const |
compute the log Likelihood of an observation.
Definition at line 180 of file STK_ModelDiagGaussian_muj_sj.h.
References STK::Law::Normal::lpdf(), and STK::sum().
|
inline |
compute the number of free parameters
Definition at line 167 of file STK_ModelDiagGaussian_muj_sj.h.
References STK::IMultiStatModel< ModelDiagGaussian_muj_sj< Data_, WColVector_ > >::p_data().
void STK::ModelDiagGaussian_muj_sj< Data_, WColVector_ >::computeParameters | ( | ) |
compute the parameters
Definition at line 190 of file STK_ModelDiagGaussian_muj_sj.h.
void STK::ModelDiagGaussian_muj_sj< Data_, WColVector_ >::computeParameters | ( | WColVector const & | weights | ) |
compute the weighted parameters
Definition at line 200 of file STK_ModelDiagGaussian_muj_sj.h.
|
inline |
Definition at line 162 of file STK_ModelDiagGaussian_muj_sj.h.
References STK::DiagGaussian_muj_sjParameters::mu(), and STK::IMultiStatModel< ModelDiagGaussian_muj_sj< Data_, WColVector_ > >::param().
|
inline |
vector of the mean log of the observations
Definition at line 164 of file STK_ModelDiagGaussian_muj_sj.h.
References STK::IMultiStatModel< ModelDiagGaussian_muj_sj< Data_, WColVector_ > >::param(), and STK::DiagGaussian_muj_sjParameters::sigma().
void STK::ModelDiagGaussian_muj_sj< Data_, WColVector_ >::writeParametersImpl | ( | ostream & | os | ) | const |
Write the parameters on the output stream os.
Definition at line 211 of file STK_ModelDiagGaussian_muj_sj.h.
References _T, and STK::mean().