STK++ 0.9.13
|
The Poisson mixture model Poisson_lk
has a probability function of the form.
More...
#include <STK_Poisson_lk.h>
Public Types | |
typedef PoissonBase< Poisson_lk< Array > > | Base |
![]() | |
typedef IMixtureDensity< Poisson_lk< Array > > | Base |
![]() | |
typedef hidden::MixtureTraits< Derived >::Array | Array |
typedef hidden::MixtureTraits< Derived >::Parameters | Parameters |
typedef hidden::Traits< Array >::Type | Type |
Public Member Functions | |
Poisson_lk (int nbCluster) | |
default constructor | |
Poisson_lk (Poisson_lk const &model) | |
copy constructor | |
~Poisson_lk () | |
destructor | |
Real | lambda (int k, int j) const |
void | randomInit (CArrayXX const *const &p_tik, CPointX const *const &p_tk) |
Initialize randomly the parameters of the Poisson mixture. | |
bool | run (CArrayXX const *const &p_tik, CPointX const *const &p_tk) |
Compute the weighted probabilities. | |
int | computeNbFreeParameters () const |
![]() | |
Real | lambda (int k, int j) const |
void | initializeModelImpl () |
Initialize the parameters of the model. | |
Real | lnComponentProbability (int i, int k) const |
int | impute (int i, int j, Weights const &pk) const |
Real | impute (int i, int j, CArrayXX const *p_tik) const |
int | rand (int i, int j, int k) const |
void | getParameters (Array ¶ms) const |
This function is used in order to get the current values of the lambdas. | |
void | writeParameters (CArrayXX const *p_tik, ostream &os) const |
This function can be used to write summary of parameters to the output stream. | |
Array const *const & | p_data () const |
int | nbCluster () const |
![]() | |
~IMixtureDensity () | |
destructor | |
int | nbCluster () const |
int | nbSample () const |
Real | lnNbSample () const |
Array const *const & | p_data () const |
Parameters const & | param () const |
void | setData (Array const &data) |
Set the data set. | |
void | setData (Array const &data, int nbRow, int nbCol, bool byRow=true) |
Set the data set and give dimensions. | |
bool | initializeStep () |
This function will be called at the beginning of the estimation process once the model is created and data is set. | |
void | setParametersStep () |
set the parameters obtained with the intermediate results and release the intermediate results. | |
void | finalizeStep () |
This function will be called once the model is estimated. | |
template<class Weights > | |
Type | sample (int i, int j, Weights const &tk) const |
![]() | |
Derived & | asDerived () |
static cast : return a reference of this with a cast to the derived class. | |
Derived const & | asDerived () const |
static cast : return a const reference of this with a cast to the derived class. | |
Derived * | asPtrDerived () |
static cast : return a ptr on a Derived of this with a cast to the derived class. | |
Derived const * | asPtrDerived () const |
static cast : return a ptr on a constant Derived of this with a cast to the derived class. | |
Derived * | clone () const |
create a leaf using the copy constructor of the Derived class. | |
Derived * | clone (bool isRef) const |
create a leaf using the copy constructor of the Derived class and a flag determining if the clone is a reference or not. | |
Additional Inherited Members | |
![]() | |
Parameters | param_ |
parameters of the derived mixture model. | |
![]() | |
PoissonBase (int nbCluster) | |
default constructor | |
PoissonBase (PoissonBase const &model) | |
copy constructor | |
~PoissonBase () | |
destructor | |
![]() | |
IMixtureDensity (int nbCluster) | |
Default constructor. | |
IMixtureDensity (IMixtureDensity const &model) | |
copy constructor. | |
void | initializeModel () |
Initialize the model before its first use. | |
bool | initializeStepImpl () |
default implementation of initializeStepImpl (do nothing and return true) | |
void | finalizeStepImpl () |
default implementation of finalizeStepImpl (do nothing) | |
void | setNbSample (int nbSample) |
Set the number of sample of the model (needed by kernel models) | |
![]() | |
IRecursiveTemplate () | |
constructor. | |
~IRecursiveTemplate () | |
destructor. | |
![]() | |
Parameters | param_ |
parameters of the derived mixture model. | |
The Poisson mixture model Poisson_lk
has a probability function of the form.
Definition at line 69 of file STK_Poisson_lk.h.
typedef PoissonBase<Poisson_lk<Array> > STK::Poisson_lk< Array >::Base |
Definition at line 72 of file STK_Poisson_lk.h.
|
inline |
default constructor
nbCluster | number of cluster in the model |
Definition at line 80 of file STK_Poisson_lk.h.
|
inline |
copy constructor
model | The model to copy |
Definition at line 84 of file STK_Poisson_lk.h.
|
inline |
|
inline |
Definition at line 94 of file STK_Poisson_lk.h.
References STK::PoissonBase< Poisson_lk< Array > >::nbCluster().
Definition at line 88 of file STK_Poisson_lk.h.
References STK::PoissonBase< Poisson_lk< Array > >::param_.
void STK::Poisson_lk< Array >::randomInit | ( | CArrayXX const *const & | p_tik, |
CPointX const *const & | p_tk | ||
) |
Initialize randomly the parameters of the Poisson mixture.
Definition at line 99 of file STK_Poisson_lk.h.
References STK::Law::Exponential::rand().
Compute the weighted probabilities.
Definition at line 109 of file STK_Poisson_lk.h.