|
STK++ 0.9.13
|
Compute the maximum likelihood estimates of a complete Gaussian statistical model. More...
#include <STK_GaussianModel.h>

Public Types | |
| typedef IGaussianModel< Array > | Base |
| typedef hidden::Traits< Array >::Col | ColVector |
| typedef hidden::Traits< Array >::Row | RowVector |
Public Types inherited from STK::IStatModel< IGaussianModel< Array > > | |
| typedef hidden::ModelTraits< IGaussianModel< Array > >::Data | Data |
| typedef hidden::ModelTraits< IGaussianModel< Array > >::ParamHandler | ParamHandler |
| typedef Data::Type | Type |
| Type of the data contained in the container. | |
| typedef hidden::Traits< Data >::Row | Row |
| Type of the row of the data container (a sample) | |
Public Member Functions | |
| GaussianModel (Array const *p_data) | |
| constructor. | |
| GaussianModel (Array const &data) | |
| constructor. | |
| ~GaussianModel () | |
| destructor. | |
| MultiLaw::Normal< RowVector > *const & | p_law () const |
| Accessor to the normal law. | |
| bool | run () |
| implementation of the Gaussian statistical model | |
| bool | run (ColVector const &weights) |
| implementation of the weighted Gaussian statistical model | |
| ArraySquareX const & | covariance () const |
| get the empirical covariance | |
Public Member Functions inherited from STK::IGaussianModel< Array > | |
| virtual | ~IGaussianModel () |
| destructor. | |
| RowVector const & | mean () const |
Public Member Functions inherited from STK::IStatModel< IGaussianModel< Array > > | |
| ~IStatModel () | |
| destructor | |
| Data const *const | p_dataij () const |
| void | setData (Data const &data) |
| Set the data set of the model. | |
| void | setData (Data const *p_data) |
| Set the data set of the model. | |
Public Member Functions inherited from STK::IStatModelBase | |
| int | nbSample () const |
| Real | lnNbSample () const |
| int | nbVariable () const |
| Real | lnLikelihood () const |
| Real | likelihood () const |
| int | nbFreeParameter () const |
| Real | computeBIC () const |
| Real | computeAIC () const |
| Real | computeML () const |
Public Attributes | |
| RowVector | mean_ |
| Vector of the empirical means. | |
Protected Member Functions | |
| void | compCovariance () |
| compute the empirical covariance matrix. | |
| void | compWeightedCovariance (ColVector const &weights) |
| compute the empirical weighted covariance matrix. | |
Protected Member Functions inherited from STK::IGaussianModel< Array > | |
| IGaussianModel (Array const *p_data) | |
| constructor. | |
| IGaussianModel (Array const &data) | |
| constructor. | |
| void | compMean () |
| compute the empirical mean | |
| void | compWeightedMean (ColVector const &weights) |
| compute the empirical weighted mean | |
Protected Member Functions inherited from STK::IStatModel< IGaussianModel< Array > > | |
| IStatModel (Data const &data) | |
| Constructor with data set. | |
| IStatModel (Data const *p_data) | |
| Constructor with a ptr on the data set. | |
Protected Member Functions inherited from STK::IStatModelBase | |
| IStatModelBase () | |
| Default constructor. | |
| IStatModelBase (int nbSample) | |
| Constructor with specified dimension. | |
| IStatModelBase (int nbSample, int nbVariable) | |
| Constructor with specified dimension. | |
| IStatModelBase (IStatModelBase const &model) | |
| Copy constructor. | |
| ~IStatModelBase () | |
| destructor | |
| void | setNbFreeParameter (int const &nbFreeParameter) |
| set the number of free parameters of the model | |
| void | setNbSample (int const &nbSample) |
| set the number of samples of the model | |
| void | setNbVariable (int const &nbVariable) |
| set the number of variables of the model | |
| void | setLnLikelihood (Real const &lnLikelihood) |
| set the log-likelihood of the model | |
| void | initialize (int nbSample, int nbVariable) |
| set the dimensions of the parameters of the model | |
Protected Attributes | |
| ArraySquareX | cov_ |
| ArrayXX of the empirical covaiance. | |
| MultiLaw::Normal< RowVector > * | p_law_ |
| pointer on the normal law | |
Protected Attributes inherited from STK::IGaussianModel< Array > | |
| RowVector | mean_ |
| Vector of the empirical means. | |
Protected Attributes inherited from STK::IStatModel< IGaussianModel< Array > > | |
| Data const * | p_dataij_ |
| A pointer on the original data set. | |
Compute the maximum likelihood estimates of a complete Gaussian statistical model.
Definition at line 52 of file STK_GaussianModel.h.
| typedef IGaussianModel<Array> STK::GaussianModel< Array >::Base |
Definition at line 55 of file STK_GaussianModel.h.
| typedef hidden::Traits<Array>::Col STK::GaussianModel< Array >::ColVector |
Definition at line 60 of file STK_GaussianModel.h.
| typedef hidden::Traits<Array>::Row STK::GaussianModel< Array >::RowVector |
Definition at line 61 of file STK_GaussianModel.h.
| STK::GaussianModel< Array >::GaussianModel | ( | Array const * | p_data | ) |
constructor.
| p_data | pointer on the data set |
Definition at line 103 of file STK_GaussianModel.h.
References STK::IStatModel< IGaussianModel< Array > >::p_dataij_, and STK::IStatModelBase::setNbFreeParameter().
| STK::GaussianModel< Array >::GaussianModel | ( | Array const & | data | ) |
constructor.
| data | reference on the data set |
Definition at line 113 of file STK_GaussianModel.h.
References STK::IStatModel< IGaussianModel< Array > >::p_dataij_, and STK::IStatModelBase::setNbFreeParameter().
| STK::GaussianModel< Array >::~GaussianModel | ( | ) |
|
protectedvirtual |
compute the empirical covariance matrix.
Implements STK::IGaussianModel< Array >.
Definition at line 167 of file STK_GaussianModel.h.
References STK::Stat::covariance().
|
protectedvirtual |
compute the empirical weighted covariance matrix.
| weights | the weights of the samples |
Implements STK::IGaussianModel< Array >.
Definition at line 173 of file STK_GaussianModel.h.
References STK::Stat::covariance().
|
inline |
get the empirical covariance
Definition at line 86 of file STK_GaussianModel.h.
References STK::GaussianModel< Array >::cov_.
|
inline |
Accessor to the normal law.
Definition at line 73 of file STK_GaussianModel.h.
References STK::GaussianModel< Array >::p_law_.
| bool STK::GaussianModel< Array >::run | ( | ) |
implementation of the Gaussian statistical model
true if no error occur and false otherwise. Definition at line 128 of file STK_GaussianModel.h.
| bool STK::GaussianModel< Array >::run | ( | ColVector const & | weights | ) |
implementation of the weighted Gaussian statistical model
| weights | the weights of the samples |
true if no error occur and false otherwise. Definition at line 149 of file STK_GaussianModel.h.
|
protected |
ArrayXX of the empirical covaiance.
Definition at line 90 of file STK_GaussianModel.h.
Referenced by STK::GaussianModel< Array >::covariance().
| RowVector STK::IGaussianModel< Array >::mean_ |
Vector of the empirical means.
Definition at line 176 of file STK_IGaussianModel.h.
|
protected |
pointer on the normal law
Definition at line 98 of file STK_GaussianModel.h.
Referenced by STK::GaussianModel< Array >::p_law().